Tokamak Energy turns on ST40 fusion reactor

28 April 2017

The UK's newest fusion reactor has been turned on for the first time and has officially achieved first plasma. The reactor aims to produce a record-breaking plasma temperature of 100 million degrees for a privately-funded venture. This is seven times hotter than the centre of the Sun and the temperature necessary for controlled fusion.

Oxford, England-based Tokamak Energy said today that with its ST40 reactor "up and running", the next steps are to complete the commissioning and installation of the full set of magnetic coils which are crucial to reaching the temperatures required for fusion. This will allow the ST40 to produce a plasma temperature of 15 million degrees - as hot as the centre of the Sun - in the autumn of this year.

Tokamak Energy's ST40 fusion reactor - 250 (Tokamak)
The ST40 fusion reactor (Image: Tokamak Energy)

David Kingham, CEO of Tokamak Energy, said: "Today is an important day for fusion energy development in the UK, and the world. We are unveiling the first world-class controlled fusion device to have been designed, built and operated by a private venture. The ST40 is a machine that will show fusion temperatures - 100 million degrees - are possible in compact, cost-effective reactors. This will allow fusion power to be achieved in years, not decades."

He added: "We will still need significant investment, many academic and industrial collaborations, dedicated and creative engineers and scientists, and an excellent supply chain. Our approach continues to be to break the journey down into a series of engineering challenges, raising additional investment on reaching each new milestone. We are already half-way to the goal of fusion energy; with hard work, we will deliver fusion power at commercial scale by 2030."

Tokamak Energy grew out of Culham Laboratory, home to JET - the world's most powerful tokamak - and the world's leading centre for magnetic fusion energy research. Tokamak Energy's technology revolves around high temperature superconducting (HTS) magnets, which allow for relatively low-power and small-size devices, but high performance and potentially widespread commercial deployment.

The world's first tokamak with exclusively HTS magnets - the ST25 HTS, Tokamak Energy's second reactor - demonstrated 29 hours continuous plasma during the Royal Society Summer Science Exhibition in London in 2015 - a world record.

Researched and written
by World Nuclear News